3.2.12 \(\int \frac {(a+b \log (c x^n))^2}{x^2 (d+e x)^3} \, dx\) [112]

3.2.12.1 Optimal result
3.2.12.2 Mathematica [A] (verified)
3.2.12.3 Rubi [A] (verified)
3.2.12.4 Maple [C] (warning: unable to verify)
3.2.12.5 Fricas [F]
3.2.12.6 Sympy [F]
3.2.12.7 Maxima [F]
3.2.12.8 Giac [F]
3.2.12.9 Mupad [F(-1)]

3.2.12.1 Optimal result

Integrand size = 23, antiderivative size = 322 \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x^2 (d+e x)^3} \, dx=-\frac {2 b^2 n^2}{d^3 x}-\frac {2 b n \left (a+b \log \left (c x^n\right )\right )}{d^3 x}-\frac {b e^2 n x \left (a+b \log \left (c x^n\right )\right )}{d^4 (d+e x)}+\frac {e \left (a+b \log \left (c x^n\right )\right )^2}{2 d^4}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{d^3 x}-\frac {e \left (a+b \log \left (c x^n\right )\right )^2}{2 d^2 (d+e x)^2}+\frac {2 e^2 x \left (a+b \log \left (c x^n\right )\right )^2}{d^4 (d+e x)}-\frac {e \left (a+b \log \left (c x^n\right )\right )^3}{b d^4 n}+\frac {b^2 e n^2 \log (d+e x)}{d^4}-\frac {5 b e n \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )}{d^4}+\frac {3 e \left (a+b \log \left (c x^n\right )\right )^2 \log \left (1+\frac {e x}{d}\right )}{d^4}-\frac {5 b^2 e n^2 \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{d^4}+\frac {6 b e n \left (a+b \log \left (c x^n\right )\right ) \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{d^4}-\frac {6 b^2 e n^2 \operatorname {PolyLog}\left (3,-\frac {e x}{d}\right )}{d^4} \]

output
-2*b^2*n^2/d^3/x-2*b*n*(a+b*ln(c*x^n))/d^3/x-b*e^2*n*x*(a+b*ln(c*x^n))/d^4 
/(e*x+d)+1/2*e*(a+b*ln(c*x^n))^2/d^4-(a+b*ln(c*x^n))^2/d^3/x-1/2*e*(a+b*ln 
(c*x^n))^2/d^2/(e*x+d)^2+2*e^2*x*(a+b*ln(c*x^n))^2/d^4/(e*x+d)-e*(a+b*ln(c 
*x^n))^3/b/d^4/n+b^2*e*n^2*ln(e*x+d)/d^4-5*b*e*n*(a+b*ln(c*x^n))*ln(1+e*x/ 
d)/d^4+3*e*(a+b*ln(c*x^n))^2*ln(1+e*x/d)/d^4-5*b^2*e*n^2*polylog(2,-e*x/d) 
/d^4+6*b*e*n*(a+b*ln(c*x^n))*polylog(2,-e*x/d)/d^4-6*b^2*e*n^2*polylog(3,- 
e*x/d)/d^4
 
3.2.12.2 Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 290, normalized size of antiderivative = 0.90 \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x^2 (d+e x)^3} \, dx=-\frac {\frac {4 b^2 d n^2}{x}+\frac {4 b d n \left (a+b \log \left (c x^n\right )\right )}{x}-\frac {2 b d e n \left (a+b \log \left (c x^n\right )\right )}{d+e x}-5 e \left (a+b \log \left (c x^n\right )\right )^2+\frac {2 d \left (a+b \log \left (c x^n\right )\right )^2}{x}+\frac {d^2 e \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^2}+\frac {4 d e \left (a+b \log \left (c x^n\right )\right )^2}{d+e x}+\frac {2 e \left (a+b \log \left (c x^n\right )\right )^3}{b n}+2 b^2 e n^2 (\log (x)-\log (d+e x))+10 b e n \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )-6 e \left (a+b \log \left (c x^n\right )\right )^2 \log \left (1+\frac {e x}{d}\right )+10 b^2 e n^2 \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )-12 b e n \left (a+b \log \left (c x^n\right )\right ) \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )+12 b^2 e n^2 \operatorname {PolyLog}\left (3,-\frac {e x}{d}\right )}{2 d^4} \]

input
Integrate[(a + b*Log[c*x^n])^2/(x^2*(d + e*x)^3),x]
 
output
-1/2*((4*b^2*d*n^2)/x + (4*b*d*n*(a + b*Log[c*x^n]))/x - (2*b*d*e*n*(a + b 
*Log[c*x^n]))/(d + e*x) - 5*e*(a + b*Log[c*x^n])^2 + (2*d*(a + b*Log[c*x^n 
])^2)/x + (d^2*e*(a + b*Log[c*x^n])^2)/(d + e*x)^2 + (4*d*e*(a + b*Log[c*x 
^n])^2)/(d + e*x) + (2*e*(a + b*Log[c*x^n])^3)/(b*n) + 2*b^2*e*n^2*(Log[x] 
 - Log[d + e*x]) + 10*b*e*n*(a + b*Log[c*x^n])*Log[1 + (e*x)/d] - 6*e*(a + 
 b*Log[c*x^n])^2*Log[1 + (e*x)/d] + 10*b^2*e*n^2*PolyLog[2, -((e*x)/d)] - 
12*b*e*n*(a + b*Log[c*x^n])*PolyLog[2, -((e*x)/d)] + 12*b^2*e*n^2*PolyLog[ 
3, -((e*x)/d)])/d^4
 
3.2.12.3 Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 335, normalized size of antiderivative = 1.04, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {2795, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x^2 (d+e x)^3} \, dx\)

\(\Big \downarrow \) 2795

\(\displaystyle \int \left (\frac {2 e^2 \left (a+b \log \left (c x^n\right )\right )^2}{d^3 (d+e x)^2}-\frac {3 e \left (a+b \log \left (c x^n\right )\right )^2}{d^3 x (d+e x)}+\frac {\left (a+b \log \left (c x^n\right )\right )^2}{d^3 x^2}+\frac {e^2 \left (a+b \log \left (c x^n\right )\right )^2}{d^2 (d+e x)^3}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 e^2 x \left (a+b \log \left (c x^n\right )\right )^2}{d^4 (d+e x)}-\frac {b e^2 n x \left (a+b \log \left (c x^n\right )\right )}{d^4 (d+e x)}-\frac {6 b e n \operatorname {PolyLog}\left (2,-\frac {d}{e x}\right ) \left (a+b \log \left (c x^n\right )\right )}{d^4}+\frac {3 e \log \left (\frac {d}{e x}+1\right ) \left (a+b \log \left (c x^n\right )\right )^2}{d^4}-\frac {b e n \log \left (\frac {d}{e x}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d^4}-\frac {4 b e n \log \left (\frac {e x}{d}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d^4}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{d^3 x}-\frac {2 b n \left (a+b \log \left (c x^n\right )\right )}{d^3 x}-\frac {e \left (a+b \log \left (c x^n\right )\right )^2}{2 d^2 (d+e x)^2}+\frac {b^2 e n^2 \operatorname {PolyLog}\left (2,-\frac {d}{e x}\right )}{d^4}-\frac {4 b^2 e n^2 \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{d^4}-\frac {6 b^2 e n^2 \operatorname {PolyLog}\left (3,-\frac {d}{e x}\right )}{d^4}+\frac {b^2 e n^2 \log (d+e x)}{d^4}-\frac {2 b^2 n^2}{d^3 x}\)

input
Int[(a + b*Log[c*x^n])^2/(x^2*(d + e*x)^3),x]
 
output
(-2*b^2*n^2)/(d^3*x) - (2*b*n*(a + b*Log[c*x^n]))/(d^3*x) - (b*e^2*n*x*(a 
+ b*Log[c*x^n]))/(d^4*(d + e*x)) - (b*e*n*Log[1 + d/(e*x)]*(a + b*Log[c*x^ 
n]))/d^4 - (a + b*Log[c*x^n])^2/(d^3*x) - (e*(a + b*Log[c*x^n])^2)/(2*d^2* 
(d + e*x)^2) + (2*e^2*x*(a + b*Log[c*x^n])^2)/(d^4*(d + e*x)) + (3*e*Log[1 
 + d/(e*x)]*(a + b*Log[c*x^n])^2)/d^4 + (b^2*e*n^2*Log[d + e*x])/d^4 - (4* 
b*e*n*(a + b*Log[c*x^n])*Log[1 + (e*x)/d])/d^4 + (b^2*e*n^2*PolyLog[2, -(d 
/(e*x))])/d^4 - (6*b*e*n*(a + b*Log[c*x^n])*PolyLog[2, -(d/(e*x))])/d^4 - 
(4*b^2*e*n^2*PolyLog[2, -((e*x)/d)])/d^4 - (6*b^2*e*n^2*PolyLog[3, -(d/(e* 
x))])/d^4
 

3.2.12.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2795
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + 
(e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[ 
c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b 
, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0 
] && IntegerQ[m] && IntegerQ[r]))
 
3.2.12.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.50 (sec) , antiderivative size = 908, normalized size of antiderivative = 2.82

method result size
risch \(\text {Expression too large to display}\) \(908\)

input
int((a+b*ln(c*x^n))^2/x^2/(e*x+d)^3,x,method=_RETURNVERBOSE)
 
output
-2*b^2*n*ln(x^n)/d^3/x-b^2*ln(x^n)^2/d^3/x+6*b^2/d^4*e*ln(x)*ln(e*x+d)*ln( 
-e*x/d)*n^2-6*b^2*n/d^4*e*ln(x^n)*ln(e*x+d)*ln(-e*x/d)-6*b^2*e*n^2*polylog 
(3,-e*x/d)/d^4+(-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I* 
c)*csgn(I*c*x^n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n) 
^3+2*b*ln(c)+2*a)*b*(-1/2*ln(x^n)/d^2/(e*x+d)^2*e+3*ln(x^n)/d^4*e*ln(e*x+d 
)-2*ln(x^n)/d^3*e/(e*x+d)-ln(x^n)/d^3/x-3*ln(x^n)/d^4*e*ln(x)-1/2*n*(-3/d^ 
4*e*ln(x)^2+6/d^4*e*(dilog(-e*x/d)+ln(e*x+d)*ln(-e*x/d))-1/d^3*e/(e*x+d)+5 
/d^4*e*ln(e*x+d)+2/d^3/x-5/d^4*e*ln(x)))-2*b^2*ln(x^n)^2/d^3*e/(e*x+d)-1/2 
*b^2*ln(x^n)^2/d^2/(e*x+d)^2*e-3*b^2*ln(x^n)^2/d^4*e*ln(x)-b^2/d^4*n^2*e*l 
n(x)-5/2*b^2/d^4*n^2*e*ln(x)^2+5*b^2/d^4*n^2*e*dilog(-e*x/d)-b^2/d^4*e*ln( 
x)^3*n^2+3*b^2*ln(x^n)^2/d^4*e*ln(e*x+d)+b^2*n*ln(x^n)/d^3*e/(e*x+d)+1/4*( 
-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^n) 
^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2*a 
)^2*(-1/2/d^2/(e*x+d)^2*e+3/d^4*e*ln(e*x+d)-2/d^3*e/(e*x+d)-1/d^3/x-3/d^4* 
e*ln(x))+6*b^2/d^4*e*ln(x)*dilog(-e*x/d)*n^2-6*b^2*n/d^4*e*ln(x^n)*dilog(- 
e*x/d)-3*b^2/d^4*e*n^2*ln(e*x+d)*ln(x)^2+3*b^2/d^4*e*n^2*ln(x)^2*ln(1+e*x/ 
d)+6*b^2/d^4*e*n^2*ln(x)*polylog(2,-e*x/d)-5*b^2*n*ln(x^n)/d^4*e*ln(e*x+d) 
+5*b^2*n*ln(x^n)/d^4*e*ln(x)+5*b^2/d^4*n^2*e*ln(e*x+d)*ln(-e*x/d)+3*b^2*n/ 
d^4*e*ln(x^n)*ln(x)^2+b^2*e*n^2*ln(e*x+d)/d^4-2*b^2*n^2/d^3/x
 
3.2.12.5 Fricas [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x^2 (d+e x)^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2}}{{\left (e x + d\right )}^{3} x^{2}} \,d x } \]

input
integrate((a+b*log(c*x^n))^2/x^2/(e*x+d)^3,x, algorithm="fricas")
 
output
integral((b^2*log(c*x^n)^2 + 2*a*b*log(c*x^n) + a^2)/(e^3*x^5 + 3*d*e^2*x^ 
4 + 3*d^2*e*x^3 + d^3*x^2), x)
 
3.2.12.6 Sympy [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x^2 (d+e x)^3} \, dx=\int \frac {\left (a + b \log {\left (c x^{n} \right )}\right )^{2}}{x^{2} \left (d + e x\right )^{3}}\, dx \]

input
integrate((a+b*ln(c*x**n))**2/x**2/(e*x+d)**3,x)
 
output
Integral((a + b*log(c*x**n))**2/(x**2*(d + e*x)**3), x)
 
3.2.12.7 Maxima [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x^2 (d+e x)^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2}}{{\left (e x + d\right )}^{3} x^{2}} \,d x } \]

input
integrate((a+b*log(c*x^n))^2/x^2/(e*x+d)^3,x, algorithm="maxima")
 
output
-1/2*a^2*((6*e^2*x^2 + 9*d*e*x + 2*d^2)/(d^3*e^2*x^3 + 2*d^4*e*x^2 + d^5*x 
) - 6*e*log(e*x + d)/d^4 + 6*e*log(x)/d^4) + integrate((b^2*log(c)^2 + b^2 
*log(x^n)^2 + 2*a*b*log(c) + 2*(b^2*log(c) + a*b)*log(x^n))/(e^3*x^5 + 3*d 
*e^2*x^4 + 3*d^2*e*x^3 + d^3*x^2), x)
 
3.2.12.8 Giac [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x^2 (d+e x)^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2}}{{\left (e x + d\right )}^{3} x^{2}} \,d x } \]

input
integrate((a+b*log(c*x^n))^2/x^2/(e*x+d)^3,x, algorithm="giac")
 
output
integrate((b*log(c*x^n) + a)^2/((e*x + d)^3*x^2), x)
 
3.2.12.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x^2 (d+e x)^3} \, dx=\int \frac {{\left (a+b\,\ln \left (c\,x^n\right )\right )}^2}{x^2\,{\left (d+e\,x\right )}^3} \,d x \]

input
int((a + b*log(c*x^n))^2/(x^2*(d + e*x)^3),x)
 
output
int((a + b*log(c*x^n))^2/(x^2*(d + e*x)^3), x)